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Linköping Institute of Technology, Department of Physics and Measurement Technology,
S-58183 Link̈oping, Sweden

E-mail: mcg@ifm.liu.se (M H Carlberg)

Received 27 August 1999

Abstract. This study concerns a molecular dynamics (MD) simulation, using the embedded-atom
method (EAM), of the self-diffusion of an interstitial in the bcc metal tungsten (W) at 2000 K. It
is found that the interstitial moves only along〈111〉 diagonals and that the switches to other non-
parallel directions take place through a two-dimensional process. The〈011〉 dumb-bell is central to
this process. Movement along the〈111〉 diagonals takes place through〈111〉 crowdions occupying
2–6 lattice sites. The probabilities of a direction switch and a move are 0.249 and 0.751, respectively.
Translating the complicated movement mechanism into the simple picture of interstitial hopping
between lattice points, the diffusion velocity is calculated to be 520 m s−1, and the activation energy
for the interstitial self-diffusion is calculated to be 0.54 eV/interstitial.

1. Introduction

Atomistic simulations of metallic materials have been performed since the late 1940s [1,2] to
investigate phenomena that could not readily be revealed by experiments. Molecular dynamics,
MD, has been used to the same end for about as long, and since the advent of the Verlet algorithm
in 1967 [3], it has been a standard method. But it was not until the early 1980s, when the
embedded-atom method [4–6] (EAM), with its natural inclusion of many-body effects, was
presented, that large systems could be simulated with confidence. Today, MD in conjunction
with the EAM is used to study a wide variety of phenomena and materials, e.g. multilayers
of Fe/Ag and Cu/Pd [7], annihilation of screw dislocations [8], martensitic transformations
in Fe/Ni alloys [9], high-energy cascades [10], orders and structures of liquid and amorphous
metals under solidification [11], liquid aluminium [12], metal–semiconductor interfaces [13],
and point defects and clusters in hcp metals [14].

Diffusion is a phenomenon of great scientific and technological importance, as it impacts
on almost every property of a material, and influences many important processes, like nuclear
and chemical reactions, electrical resistivity, and transport of heat. The exact mechanism of
diffusion on an atomistic level is hard to study experimentally, as the timescales involved are
short and the spatial extents of the defect configurations are small. Naturally, the larger the
defect complex the easier it is to study experimentally, as it becomes both easier to detect with
methods such as positron annihilation spectroscopy and electron microscopy, and less mobile.
To obtain detailed information, atomistic simulations can be applied successfully, provided
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that the interaction potential used is suitable. This paper reports the result from such a study
where the diffusion of a single interstitial in bcc W is studied using the EAM and MD.

2. Methodology

The simulation configuration was generated by taking a cube with a side of 12 unit cells, on
which bulk conditions were imposed by using periodic boundary conditions in all three spatial
directions. The mean pressure was reduced to zero by adjusting the size of the simulation
cell. After the pressure had been adjusted, a single interstitial was added in the centre of the
cell, in such a way that it was initially on the main [111] diagonal in the middle between two
other atoms on the same diagonal. This gave a total of 3457 atoms in the simulation cell. The
temperature was set to 2000 K and the whole simulation cell was allowed to relax for 1 ps.
After this, a further 500 ps were simulated which were then investigated.

The reported simulation was carried out by molecular dynamics, using the embedded-
atom method [15] (EAM) to describe the interaction between the atoms. The forms used
were those given by Johnson and Oh [5]. The total energy, the volume, and the number of
particles were kept constant throughout the simulation, thus placing it in the thermodynamic
EVN ensemble. The time step was dynamically adjusted so as to improve performance while
conserving the total energy. Other details on the implementation can be found in previous
work by the authors [16].

3. Results and discussion

3.1. Defect configurations

There are two types of defect observed in the simulation: a〈011〉 dumb-bell and a〈111〉
crowdion. The crowdion exists in several varieties, all having in common thatX atoms share
X − 1 lattice sites along an〈111〉 direction. Those will be denoted as CX, whereX ranges
from three to seven; C3 is the crowdion familiar from the literature. For details on the defect
configurations, see other work by the authors [20].

3.2. Movement of crowdions

Earlier simulations by the authors reveal that the interstitial is accommodated into the lattice
through small distortions [20]. In this way, the interstitial stops being a perfect point defect, and
gets a spatial extent. The movement of the interstitial is then not simply the jumping of a single
atom through the lattice, but a subtle continuous movement through small rearrangements of
a set of atoms.

The crowdions are located on a〈111〉 direction. There are eight such in the bcc lattice,
namely [111], [111], [111], [111], [111], [111], [111], and [111]. Grouping these according to
what〈111〉 diagonal they are located on, and picking those with positivez-component, leaves
four: [111], [111], [111], and [111].

Consider the group of atoms that lie along a specific single〈111〉 direction. The movement
of the defect is restricted to this group of atoms. It will not involve atoms in any other parallel
〈111〉 directions. There is a single mechanism through which the crowdion can change over to
another〈111〉 direction. This is a two-dimensional process in the〈011〉 plane defined by the
two 〈111〉 directions involved. The process involves the dumb-bell and is described in detail
further on in section 3.4.
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When the crowdion moves along the〈111〉 direction that it currently occupies, it does so
through small rearrangements and distortions as described below, where the individual atoms
move much less than half a unit-cell diagonal. A specific crowdion can either move by itself,
or by first transforming to a larger crowdion, and then re-emerging somewhere along the extent
of that. A Cx crowdion will, when it transforms, do so either to a Cx−1 or to a Cx+1, apart from
C7 which only transforms into C6. The larger crowdions are as mobile as the smaller. The
larger mass involved is compensated for by the smaller movement needed of the individual
atoms in this case.

The movement of a C4 crowdion one unit cell along a〈111〉 direction is shown in figure 1.
The C4 crowdion transforms into a C5 crowdion, which moves through the typical small
rearrangements, and then the C4 crowdion reappears at the upper end. This worm-like way
of moving through extension and contraction is typical of the movement of the defect through
the lattice.
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Figure 1. The figure shows how a C4 crowdion moves a whole unit cell along a〈111〉 direction
through transforming into a C5 crowdion, which moves through small rearrangements, and that the
C4 crowdion reappears at the upper end. The times are 79.53 ps, 79.64 ps, 79.89 ps, and 79.94 ps
for panels (1), (2), (3), and (4) respectively. The atoms in the defect configuration are shown in
black to aid the eye in discerning their motion.

3.3. Movement of the dumb-bell

The〈011〉 dumb-bell does not move by itself, but rather transforms into a C3 crowdion which
then moves along an〈111〉 direction using the movement mechanism of the crowdions as
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shown in section 3.2. A process through which the dumb-bell in effect moves half a unit cell
down along the〈111〉 direction is shown in figure 2. First, the dumb-bell transforms into a C3,
which then expands to the C4 crowdion, which transforms into C5. The expansion continues
through C6, into C7. The crowdion then contracts through C6 to C5, and then through C4 and
C3 back into the dumb-bell configuration—but half a unit-cell diagonal down along the〈111〉
direction.
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Figure 2. The figure shows how a dumb-bell moves half a unit cell along a〈111〉 direction through
C3 to C7; for brevity, only the steps involving the crowdions C5 and C7 are shown here. The times
are 212.85 ps, 213.05 ps, 213.25 ps, 213.36 ps, and 213.61 ps for panels (1), (2), (3), (4), and (5)
respectively. The atoms shown hatched are part of the defect. The atoms shown in black are part
of the defect configuration in all panels; note their relative positions.

3.4. Rotation

There are two〈111〉 diagonals passing through the middle of the〈011〉 dumb-bell. Due to
the symmetry of the configuration, the dumb-bell may transform into a crowdion on any one
of them with the same probability with no preference for one or the other. For example, the
centre of the dumb-bell in the [110] plane in figure 2 lies on the [111] and [111] diagonals.
For the same reasons the crowdion can transform into a dumb-bell on any of the three{011}
planes of which the diagonal is part. For example, the crowdion of panel (3) in figure 2 could
just as well have transformed into a dumb-bell on the (101) and (011) planes instead of on
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the (110) plane. Thus, the〈011〉 dumb-bell is the central point through which the defect can
change its direction of movement, and this can happen without the defect contracting to a real
point defect.

The process is contained in the〈011〉 plane defined by the starting and ending〈111〉
diagonals. It is shown schematically in figure 3, leaving out some intermediate steps like the
transformation of the dumb-bell into C3, and the transformation between the crowdions C3,
C4, C5, and C6. The two central atoms (shown in black in the figure) are rotated, around the
crossing points of the two diagonals, by the surrounding lattice. The configuration goes from
crowdion to dumb-bell, and then to a crowdion on the other diagonal.
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Figure 3. The figure shows the mechanism of crossover between two〈111〉 directions in the same
〈011〉 plane, here the [110] plane. A [111] C6 contracts into a dumb-bell configuration, which
then expands into a C6 along the [111] diagonal. The times are 228.83 ps, 229.03 ps, 229.19 ps,
229.34 ps, and 229.49 ps in panels (1), (2), (3), (4), and (5) respectively. The atoms shown in black
or hatched/cross-hatched are part of the defect. The atoms shown in black are part of the defect
configuration in all panels and have been shown thus to emphasize their movement.

3.5. Simplified general movement

The above description of the movement of the defect configuration complex differs radically
from the simple picture of the defect hopping between vacant neighbour sites found in much
of the literature. The simplified picture can be arrived at by accounting for the interstitial
at the centre of the distortion complex, and by accounting for the centre of the complex at
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bcc lattice points. In this picture, for a single interstitial moving in a bcc lattice, there exist
eight neighbouring sites to which the interstitial can jump. However, the restriction that the
interstitial preferably moves along the current〈111〉 direction must also be included. From the
simulation, the probability of a move and a rotation are 0.751 and 0.249, respectively.

3.6. Diffusion constants

In the simplified picture where the interstitial moves through hopping to nearest-neighbour
sites, the diffusion rate is [18]

0 = zνe1G/(RT ) (1)

where0 is the frequency of successful jumps,z is the number of sites to which the jump can
be done,ν is the frequency of attempted jumps,1G = 1H − T 1S is the Gibbs free energy,
R is the gas constant, andT is the temperature. The entropy term,T 1S, is zero, since there
is just one interstitial in the simulation, and there are as many possible ways of placing it after
the jump as before. The entityz is eight in a bcc lattice. Equation (1) can then be written as

0 = 8νe1H/(RT ). (2)

From this we can determine the enthalpy1H , which is the activation energy for the
diffusion, if we can compute0 andν. The entity0 is related to the average diffusion velocity,
andν is related to the movement of the atoms in the simulation.

By summing the length of the path along which the centre of the defect complex has
moved, dividing the sum by the time elapsed, and plotting the resulting value as a function
of the time, we arrive at figure 4. This gives, at the end of the simulation, an estimate of
the diffusion velocity. From the figure, we estimate it to be 5.2 Å ps−1. The lattice constant
in the simulation is 3.16 Å, giving a nearest-neighbour distance of 2.74 Å. The frequency of
successful jumps is then 1.9× 1012 Hz.
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Figure 4. The figure shows the average diffusion velocity as a function of time. As more and more
data are gathered into the average, the ‘noise’ decreases, and at the right-hand side of the figure, an
estimation of the average diffusion velocity can be read.

The entityν can be computed from the movement of the atoms through the simulation.
Since the simulation has an adaptive time step, the data are not equidistant in time. This makes
a direct Fourier transform impossible to perform; instead an estimation of the Fourier spectrum
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was computed using the Lomb method [19]. The highest significant frequency in this spectrum
was 5.3× 1012 Hz.

It is now possible to compute1H from equation (2). The result is 51.7 kJ mol−1, or
0.54 eV per interstitial atom. For self-diffusion through vacancies, the corresponding value
from simulations is 5.54 eV/atom [17], and one experimental value is 5.63± 0.21 eV [17].
This is consistent with the immobility of vacancies as compared to self-interstitials observed
generally in atomistic simulations and experiments. In a similar simulation to the one reported
in this paper, but involving a vacancy, the defect does not move at all during the 500 ps simulated
time.

The value of 0.54 eV per interstitial atom is clear in the simplified picture of an interstitial
atom jumping between sites in the lattice. It is less so in the real configuration where the
crowdion has been observed to contain up to seven atoms; is it then ‘0.54 eV perX atoms’?
Since the movement process is so complex, it is hard to determine the energy barrier for every
part of it. Thus the concept of an energy barrier is not very useful in this case.

4. Conclusions

Molecular dynamics using the EAM has been used to study the diffusion of a single interstitial
in bcc W at 2000 K. The interstitial has a spatial extent and cannot be considered a point in
space. Movement takes place only in the crowdion configuration, and only along the〈111〉
direction that it currently occupies. The movement involves only delicate rearrangements of
the atoms within the defect, and those directly outside of it on the same line. The crowdions
transform only into the other crowdions of closest size apart from C7, which only transforms
into C6, and C3, which might transform into C4 or the dumb-bell. The dumb-bell is the central
point through which another direction of movement occurs as it is the crossing point of non-
parallel directions. The change to a new direction is a two-dimensional process in the plane
defined by the two〈111〉 directions involved. The probability of movement through crowdions,
and change of direction through a dumb-bell, are 0.751 and 0.249, respectively.

The activation energy for the diffusion of a single interstitial in an otherwise defect-free
matrix has been computed to be 0.54 eV/interstitial, which corresponds to a diffusion velocity
of 520 m s−1. This activation energy has been compared to the activation energy for diffusion
through the vacancy mechanism and found to be a factor of ten lower. This is consistent with
the general condition for crystals that vacancies are much less mobile than interstitials.
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